27 research outputs found

    Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele

    <i>GRIN2A</i>-related disorders:genotype and functional consequence predict phenotype

    Get PDF
    Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders

    Atypical hemispheric asymmetries for the processing of phonological features in children with rolandic epilepsy.

    No full text
    International audienceWe assessed language lateralization in 177 healthy 4- to 11-year-old children and adults and atypical asymmetries associated with unilateral epileptic foci in 18 children with benign epilepsy with centrotemporal spikes (BECTS). Dichotic listening results revealed two indices of immature functional asymmetry when the focus was left-sided (BECTS-L). First, children with BECTS-L did not show left hemisphere dominance for the processing of place of articulation, which was recorded in children with BECTS-R and control children. On the contrary, healthy children exhibited a gradual increase in left hemisphere dominance for place processing during childhood, which is consistent with the shift from global to finer-grained acoustic analysis predicted by the Developmental Weighting Shift model. Second, children with BECTS-L showed atypical left hemisphere involvement in the processing of the voiced value (+V), associated with a long acoustic event in French stop consonants, whereas right hemisphere dominance increased with age for +V processing in healthy children. BECTS-L, therefore, interferes with the development of left hemisphere dominance for specific phonological mechanisms

    STAG2 microduplication in a patient with eyelid myoclonia and absences and a review of EMA-related reported genes

    No full text
    International audienceXq25 microduplication involving exclusively STAG2 is a new distinctive cohesinopathy including mild to moderate intellectual disability, speech delay and facial dysmorphism. Seizures seem to be scarce, but detailed seizure type descriptions are missing. We report the case of an 8-year-old boy with mild intellectual disability and eyelid myoclonia with onset at age of 3 years, initially misinterpreted as tics. An ictal VIDEO-EEG documented eye closure elicited generalized 3 Hz spike-waves or polyspike-waves concomitant to eyelid myoclonia, sometimes associated to brief clinically observable absences. Intermittent photic stimulation revealed a photoparoxysmal response. Array CGH identified a 199 kb copy number gain in Xq25 including the whole STAG2 gene, inherited from his asymptomatic mother. To the best of our knowledge, this is the first case of STAG2 encephalopathy fulfilling all electroclinical criteria for epilepsy with eyelid myoclonia and absences (EMA), formally named Jeavons syndrome (JS). As for other Genetic Generalized Epilepsy syndromes, EMA/JS usually occurs in normally developing children. Intellectual disability of variable degree is occasionally reported. On the background of other genes responsible for Developmental and Epileptic Encephalopathies, linked to specific generalized seizure types or seizure combinations, we discuss the contribution of pathogenic variants in CHD2, SYNGAP1 and some other genes as, RORB, NEXMIF and KCNB1 to this peculiar EMA phenotype

    Behavioral and fMRI responses to fearful faces are altered in benign childhood epilepsy with centrotemporal spikes (BCECTS).

    No full text
    We hypothesized that children with benign childhood epilepsy with centrotemporal spikes (BCECTS) might have altered social cognitive skills and underlying neural networks. We studied 13 patients with BCECTS and 11 age-matched controls using event-related functional magnetic resonance imaging (fMRI) with an emotional discrimination task consisting of viewing happy, fearful, scrambled, and neutral faces. Behavioral performance measured during the task was correlated with clinical variables and behavioral ratings. In comparison with age-matched controls, children with BCECTS performing a fearful faces detection task showed significantly reduced bilateral fMRI activation in the insular cortex, caudate, and lentiform nuclei, as well as increased response time. The percentage of errors made by children with BCECTS correlated negatively with age, a finding not observed in controls. In patients, accuracy positively correlated with time since the last seizure. The above abnormalities were not observed during happy faces detection task, except for a slower response in children with BCECTS as compared to controls. Our study suggests that BCECTS is associated with altered social cognition network and function, particularly for the identification of fearful faces. The age dependency of some of these findings supports the view that a delayed maturation of spiking cortical regions might underlie the cognitive dysfunction observed in BCECTS

    Neural correlates of verbal working memory in children with epilepsy with centro-temporal spikes.

    No full text
    Previous functional magnetic resonance imaging (fMRI) studies have identified brain systems underlying different components of working memory (WM) in healthy subjects. The aim of this study was to compare the functional integrity of these neural networks in children with self-limited childhood epilepsy with centro-temporal spikes (ECTS) as compared to healthy controls, using a verbal working memory task (WMT). Functional MRI of WM in seventeen 6-to-13 year-old children, diagnosed with ECTS, and 17 sex- and age-matched healthy controls were conducted at 3 T. To estimate BOLD responses during the maintenance of low, medium, and high WMT loads, we used a Sternberg verbal WMT. Neuropsychological testing prior to scanning and behavioral data during scanning were also acquired. Behavioral performances during WMT, in particular accuracy and response time, were poorer in children with ECTS than in controls. Increased WM load was associated with increased BOLD signal in all subjects, with significant clusters detected in frontal and parietal regions, predominantly in the left hemisphere. However, under the high load condition, patients showed reduced activation in the frontal, temporal and parietal regions as compared to controls. In brain regions where WM-triggered BOLD activation differed between groups, this activation correlated with neuropsychological performances in healthy controls but not in patients with ECTS, further suggesting WM network dysfunction in the latter. Children with ECTS differ from healthy controls in how they control WM processes during tasks with increasing difficulty level, notably for high WM load where patients demonstrate both reduced BOLD activation and behavioral performances

    West syndrome caused by homozygous variant in the evolutionary conserved gene encoding the mitochondrial elongation factor GUF1.

    No full text
    West syndrome (WS), defined by the triad of infantile spasms, pathognomonic hypsarrhythmia and developmental regression, is a rare epileptic disease affecting about 1:3500 live births. To get better insights on the genetic of this pathology, we exome-sequenced the members of a consanguineous family affected with isolated WS. We identified a homozygous variant (c.1825G&gt;T/p.(Ala609Ser)) in the GUF1 gene in the three affected siblings. GUF1 encodes a protein essential in conditions that counteract faithful protein synthesis: it is able to remobilize stuck ribosomes and transiently inhibit the elongation process to optimize protein synthesis. The variant identified in the WS family changes an alanine residue conserved in all eukaryotic organisms and positioned within the tRNA-binding moiety of this nuclear genome-encoded mitochondrial translational elongation factor. Yeast complementation assays show that the activity of GUF1(A609S) is modified in suboptimal environments. We suggest a new link between improper assembly of respiratory chain complexes and WS

    GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction.

    No full text
    Epileptic encephalopathies are severe brain disorders with the epileptic component contributing to the worsening of cognitive and behavioral manifestations. Acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and continuous spike and waves during slow-wave sleep syndrome (CSWSS) represent rare and closely related childhood focal epileptic encephalopathies of unknown etiology. They show electroclinical overlap with rolandic epilepsy (the most frequent childhood focal epilepsy) and can be viewed as different clinical expressions of a single pathological entity situated at the crossroads of epileptic, speech, language, cognitive and behavioral disorders. Here we demonstrate that about 20% of cases of LKS, CSWSS and electroclinically atypical rolandic epilepsy often associated with speech impairment can have a genetic origin sustained by de novo or inherited mutations in the GRIN2A gene (encoding the N-methyl-D-aspartate (NMDA) glutamate receptor α2 subunit, GluN2A). The identification of GRIN2A as a major gene for these epileptic encephalopathies provides crucial insights into the underlying pathophysiology
    corecore